Областное государственное бюджетное общеобразовательное учреждение «Томский физико-технический лицей»

Рассмотрено	Согласовано		Утвержда	Ю
на заседании методического	Заместитель дир	ектора по УВР	директор О	ГБОУ «Томский
объединения учителей	ОГБОУ «Томский физико-		физико-технический лицейх	
естественно-математических дисциплин ОГБОУ «Томский		цей»		
физико-технический лицей»	F	Е.Л. Здоровец		В.С.Ефремов
Протокол №				
Т.Н. Ромашова				
« » 2020 г	« »	2020 г.	« »	2020 г.

Рабочая программа учебного предмета

ХИМИЯ

8-9 классы базовый уровень

> Автор-составитель: Колчев Максим Леонидович учитель химии

Пояснительная записка

Рабочая учебная программа для изучения курса «Химия» учащимися 8-9 класса базовый уровень составлена на основании следующих нормативно-правовых документов:

- 1. Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 N 273-ФЗ;
- 2. Фундаментальное ядра содержания общего образования (Рос. акад. наук, Рос. акад. образования; под ред. В. В. Козлова, А. М. Кондакова. 4-е изд., дораб. М. Просвещение, 2011).
- 3. Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17.12.2010 г. № 1897;
- 4. Примерная основная образовательная программа основного общего образования, одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15);
- 5. Учебного плана ОГБОУ «Томский физико-технический лицей»;
- 6. СанПиН, 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях» (утвержденные постановлением Главного государственного санитарного врача Российской Федерации 29.12.2010 г. №189).

Программа предназначена для работы по учебникам химии авторов Г.Е. Рудзитиса и Ф.Г. Фельдмана, прошедшим экспертизу РАН и РАО и вошедшим в Федеральный перечень учебников, рекомендованных Министерством образования и науки РФ к использованию в образовательной процессе в общеобразовательных учреждениях.

Изучение химии на уровне среднего общего образования направлено на достижение следующих целей:

Основные *цели* изучения химии направлены:

- на освоение важнейших знаний об основных понятиях и законах химии, химической символике;
- на *овладение умениями* наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- на *развитие* познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- на *воспитание* отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- на *применение полученных знании и умений* для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающее среде.

Одной из важнейших **задач** основного общего образования является подготовка обучающихся к осознанному и ответственному выбору жизненного и профессионального пути. Обучающиеся должны научиться самостоятельно ставить цели и определять пути их достижения, использовать приобретенный в школе опыт в реальной жизни, за рамками учебного процесса.

Химия как учебный предмет вносит существенный вклад в воспитание и развитие обучающихся; она призвана вооружить их основами химических знаний, необходимых для повседневной жизни, заложить фундамент для дальнейшего совершенствования этих знаний, а также способствовать безопасному поведению в окружающей среде и бережному отношению к ней. Развитие познавательных интересов в процессе самостоятельного

приобретения химических знаний и использование различных источников информации, в том числе компьютерных.

Воспитание убежденности в позитивной роли химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и окружающей среде.

МЕСТО УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Программа рассчитана на 136 ч (2 ч в неделю). 2часв неделю в 8 классе и 2 час в неделю в 9 классе.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

В содержании данного курса представлены основополагающие теоретические сведения по химии, включающие изучение состава и строения веществ, зависимости их свойств от строения, исследование закономерностей химических превращений и путей управления ими в целях получения веществ, материалов, энергии.

Содержание учебного предмета включает сведения о неорганических веществах, их строении и свойствах, а также химических процессах, протекающих в окружающем мире. Наиболее сложные элементы Фундаментального ядра содержания общего образования по химии, такие, как основы органической и промышленной химии, перенесены в программу средней (полной) общеобразовательной школы.

Теоретическую основу изучения неорганической химии составляет атомно-молекулярное учение, периодический закон Д.И. Менделеева с краткими сведениями о строении атомов, видах химической связи, закономерностях протекании химических реакций.

В изучении курса значительна роль отводится химическому эксперименту: проведению практических и лабораторных работ и описанию их результатов; соблюдению норм и правил поведения в химических лабораториях.

Главные цели среднего общего образования состоят:

- в формировании целостного представления о мире, основанного на приобретённых знаниях, умениях и способах деятельности;
 - в приобретении опыта познания, самопознания, разнообразной деятельности;
- в подготовке к осознанному выбору образовательной и профессиональной траектории. В изучении курса химии большая роль отводится химическому эксперименту, который представлен практическими работами, лабораторными опытами и демонстрационными экспериментами. Очень важным является соблюдение правил техники безопасности при работе в химической лаборатории. В качестве ценностных ориентиров химического образования выступают объекты, изучаемые в курсе химии, к которым у обучающихся формируется ценностное отношение. Основу познавательных ценностей составляют научные знания и научные методы познания. Развитие познавательных ценностных ориентации содержания курса химии позволяет сформировать:
 - уважительное отношение к созидательной, творческой деятельности;
 - понимание необходимости здорового образа жизни;
- потребность в безусловном выполнении правил безопасного использования веществ в повседневной жизни;
- сознательный выбор будущей профессиональной деятельности. Курс химии обладает возможностями для формирования коммуникативных ценностей, основу которых составляют процесс общения и грамотная речь, способствующие:
 - правильному использованию химической терминологии;
- развитию потребности вести диалог, выслушивать мнение оппонента, участвовать в дискуссии;
- развитию способности открыто выражать и аргументированно отстаивать свою точку зрения.

Критерии оценивания устных ответов и письменных работ по химии.

Результаты обучения химии должны соответствовать общим задачам предмета и требованиям к его усвоению. Результаты обучения оцениваются по пятибалльной системе. При оценке учитываются следующие качественные показатели ответов:

- глубина (соответствие изученным теоретическим обобщениям);
- •осознанность (соответствие требуемым в программе умениям применять полученную информацию);
- •полнота (соответствие объему программы и информации учебника).

При оценке учитываются число и характер ошибок (существенные или несущественные). Существенные ошибки связаны с недостаточной глубиной и осознанностью ответа (например, ученик неправильно указал основные признаки понятий, явлений, характерные свойства веществ, неправильно сформулировал закон, правило и т.д. или ученик не смог применить теоретические знания для объяснения и предсказания явлений, установлении причинно-следственных связей, сравнения и классификации явлений и т. п.). Несущественные ошибки определяются неполнотой ответа (например, упущение из вида

какого-либо нехарактерного факта при описании вещества, процесса). К ним можно отнести оговорки, описки, допущенные по невнимательности (например, на два и более уравнений реакций в полном ионном виде допущена одна ошибка в обозначении заряда иона). Результаты обучения проверяются в процессе устных и письменных ответов учащихся, а

также при выполнении ими химического эксперимента.

Оценка устного ответа

Оценка «5»: • ответ полный и правильный на основании изученных теорий; • материал изложен в определенной логической последовательности, литературным языком; • ответ самостоятельный.

Оценка «4»: • ответ полный и правильный на основании изученных теорий; • материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию учителя. Оценка «З»: • ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный.

Оценка «2»: • при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые учащийся не может исправить при наводящих вопросах учителя.

Оценка «1»: • отсутствие ответа.

Оценка письменных работ

Оценка экспериментальных умений Оценка ставится на основании наблюдения за учащимися и письменного отчета за работу.

Оценка «5»: • работа выполнена полностью и правильно, сделаны правильные наблюдения и выводы; • эксперимент осуществлен по плану с учетом техники безопасности и правил работы с веществами и оборудованием; 18 • проявлены организационно-трудовые умения (поддерживаются чистота рабочего места и порядок на столе, экономно используются реактивы).

Оценка «4»: • работа выполнена правильно, сделаны правильные наблюдения и выводы, но при этом эксперимент проведен не полностью или допущены несущественные ошибки в работе с веществами и оборудованием

Оценка «3»: • работа выполнена правильно не менее чем наполовину или допущена существенная ошибка в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которая исправляется по требованию учителя.

Оценка «2»: • допущены две (и более) существенные ошибки в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которые учащийся не может исправить даже по требованию учителя.

Оценка «1»: • работа не выполнена, у учащегося отсутствуют экспериментальные умения.

Оценка умений решать экспериментальные задачи

Оценка «5»: • план решения составлен правильно; • правильно осуществлен подбор химических реактивов и оборудования; • дано полное объяснение и сделаны выводы.

Оценка «4»: • план решения составлен правильно; • правильно осуществлен подбор химических реактивом и оборудования, при этом допущено не более двух несущественных ошибок в объяснении и выводах.

Оценка «3»: • план решения составлен правильно; •правильно осуществлен подбор химических реактивов и оборудования, но допущена существенная ошибка в объяснении и выводах.

Оценка «2»: • допущены две (и более) ошибки в плане решения, в подборе химических реактивов и оборудования, в объяснении и выводах.

Оценка « 1 »: • задача не решена.

Оценка умений решать расчетные задачи

Оценка «5»: • в логическом рассуждении и решении нет ошибок, задача решена рациональным способом.

Оценка «4»: •в логическом рассуждении и решении нет существенных ошибок, но задача решена нерациональным способом или допущено не более двух несущественных ошибок.

Оценка «3»: •в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Оценка «2»: •имеются существенные ошибки в логическом рассуждении и в решении.

Оценка «1»: •отсутствие ответа на задание.

Оценка письменных контрольных работ

Оценка «5»: •ответ полный и правильный, возможна несущественная ошибка. Оценка «4»: •ответ неполный или допущено не более двух несущественных ошибок. Оценка «3»: •работа выполнена не менее чем наполовину, допущена одна существенная ошибка и при этом дветри несущественные.

Оценка «2»: •работа выполнена меньше чем наполовину или содержит несколько существенных ошибок.

Оценка «1»: •работа не выполнена.

При оценке выполнения письменной контрольной работы необходимо учитывать требования единого орфографического режима. Отметка за итоговую контрольную работу корректирует предшествующие при выставлении отметки за четверть, полугодие, год.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

предметные результаты:
В результате изучения учебного предмета «Химия» на уровне среднего общего
образования:
Выпускник научится:
🗆 раскрывать на примерах роль химии в формировании современной научной картины
мира и в практической деятельности человека;
□ демонстрировать на примерах взаимосвязь между химией и другими естественными
науками;
□ раскрывать на примерах положения теории химического строения А.М. Бутлерова; □
понимать физический смысл Периодического закона Д.И. Менделеева и на его основе
объяснять зависимость свойств химических элементов и образованных ими веществ от
электронного строения атомов;
□ объяснять причины многообразия веществ на основе общих представлений об их составе
и строении;
□ применять правила систематической международной номенклатуры как средства

различения и идентификации веществ по их составу и строению;

□ составлять молекулярные и структурные формулы органических веществ как носителей
информации о строении вещества, его свойствах и принадлежности к определенному классу
соединений;
🗆 характеризовать органические вещества по составу, строению и свойствам,
устанавливать причинно-следственные связи между данными характеристиками вещества;
приводить примеры химических реакций, раскрывающих характерные свойства
типичных представителей классов органических веществ с целью их идентификации и
объяснения области применения;
прогнозировать возможность протекания химических реакций на основе знаний о типах
химической связи в молекулах реагентов и их реакционной способности;
использовать знания о составе, строении и химических свойствах веществ для
безопасного применения в практической деятельности;
приводить примеры практического использования продуктов переработки нефти и
природного газа, высокомолекулярных соединений (полиэтилена, синтетического каучука,
ацетатного волокна);
проводить опыты по распознаванию органических веществ: глицерина, уксусной
кислоты, непредельных жиров, глюкозы, крахмала, белков – в составе пищевых продуктов и
косметических средств;
🗆 владеть правилами и приемами безопасной работы с химическими веществами и
лабораторным оборудованием;
🗆 устанавливать зависимость скорости химической реакции и смещения химического
равновесия от различных факторов с целью определения оптимальных условий протекания
химических процессов;
□ приводить примеры гидролиза солей в повседневной жизни человека;
приводить примеры окислительно-восстановительных реакций в природе,
производственных процессах и жизнедеятельности организмов;
□ приводить примеры химических реакций, раскрывающих общие химические свойства
простых веществ – металлов и неметаллов;
□ проводить расчеты на нахождение молекулярной формулы углеводорода по продуктам
сгорания и по его относительной плотности и массовым долям элементов, входящих в его
состав;
🗆 владеть правилами безопасного обращения с едкими, горючими и токсичными
веществами, средствами бытовой химии;
осуществлять поиск химической информации по названиям, идентификаторам,
структурным формулам веществ; 5
 □ критически оценивать и интерпретировать химическую информацию, содержащуюся в
сообщениях средств массовой информации, ресурсах Интернета, научно-популярных
статьях с точки зрения естественно-научной корректности в целях выявления ошибочных
суждений и формирования собственной позиции;
представлять пути решения глобальных проблем, стоящих перед человечеством:
экологических, энергетических, сырьевых, и роль химии в решении этих проблем.
Выпускник получит возможность научиться:
□ иллюстрировать на примерах становление и эволюцию органической химии как науки
на различных исторических этапах ее развития;
🗆 использовать методы научного познания при выполнении проектов и учебно-
исследовательских задач по изучению свойств, способов получения и распознавания
органических веществ;
объяснять природу и способы образования химической связи: ковалентной (полярной,
неполярной), ионной, металлической, водородной – с целью определения химической
активности веществ;

	устанавливать	генетическую	СВЯЗЬ	между	классами	органических	веществ	ДЛЯ
обо	основания принц	ципиальной воз	онжом	сти получ	ения органи	ических соедине	ний задан	ного
coc	става и строения	•						
	устанавливать	взаимосвязи м	ежду ф	рактами и	и теорией,	причиной и сл	іедствием	при
ана	ализе проблемны	іх ситуаций и о	боснова	ании прин	имаемых р	ешений на осно	ве химиче	ских
зна	ний.							

Личностными результатами освоения предмета «Химия» являются следующие умения: осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;

строить собственное целостное мировоззрение на основе изученных фактов; осознавать потребность и готовность к самообразованию, в том числе и в рамках, самостоятельной деятельности вне школы; оценивать поведение с точки зрения химической безопасности (тексты и задания) и жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;

оценивать экологический риск взаимоотношений человека и природы. формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды - гаранта жизни и благополучия людей на Земле; осознавать современное многообразие типов мировоззрения, общественных, религиозных, атеистических, культурных традиций, которые определяют разные объяснения происходящего в мире;

учиться признавать противоречивость и незавершенность своих взглядов на мир, возможность их изменения; учиться использовать свои взгляды на мир для объяснения различных ситуаций, решения возникающих проблем и извлечения жизненных уроков;

осознавать свои интересы, находить и изучать в учебниках по разным предметам материал (из максимума), имеющий отношение к своим интересам;

использовать свои интересы для выбора индивидуальной образовательной траектории,потенциальной будущей профессии и соответствующего профильного образования; приобретать опыт участия в делах, приносящих пользу людям;

учиться самостоятельно выбирать стиль поведения, привычки, обеспечивающие безопасный образ жизни и сохранение здоровья — своего, а также близких людей и окружающих; учиться самостоятельно противостоять ситуациям, провоцирующим на поступки, которые угрожают безопасности и здоровью;

выбирать поступки, нацеленные на сохранение и бережное отношение к природе, особенно живой, избегая противоположных поступков, постепенно учась и осваивая стратегию рационального природопользования;

учиться убеждать других людей в необходимости овладения стратегией рационального природопользования; использовать экологическое мышление для выбора стратегии собственного поведения в качестве одной из ценностных установок.

Метапредметными результатами является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

самостоятельно обнаруживать и формулировать учебную проблему,

определять цель учебной деятельности,

выбирать тему проекта;

выдвигать версии решения проблемы,

осознавать конечный результат,

выбирать из предложенных и искать самостоятельно средства достижения цели; составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;

в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки; подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель; работая по предложенному и самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

планировать свою индивидуальную образовательную траекторию; свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

уметь оценить степень успешности своей индивидуальной образовательной деятельности; Давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Познавательные УУД:

анализировать, сравнивать, классифицировать и обобщать факты и явления, выявлять причины и следствия простых явлений;

7 осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;

строить классификацию на основе дихотомического деления (на основе отрицания); строить логическое рассуждение, включающее установление причинно-следственных связей;

создавать схематические модели с выделением существенных характеристик объекта;

составлять тезисы, различные виды планов (простых, сложных и т.п.); преобразовывать информацию из одного вида в другой (таблицу в текст и пр.); вычитывать все уровни текстовой информации; анализировать, сравнивать, классифицировать и обобщать понятия: давать определение понятиям на основе изученного на различных предметах учебного материала, осуществлять логическую операцию установления родо-видовых отношений, обобщать понятия — осуществлять логическую операцию перехода от понятия с меньшим объ.мом к понятию с большим объемом;

строить логическое рассуждение, включающее установление причинно-следственных связей; создавать модели с выделением существенных характеристик объекта, преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;

представлять информацию в виде конспектов, таблиц, схем, графиков; преобразовывать информацию из одного вида в другой и выбирать удобную для себя форму фиксации и представления информации;

понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты и т.д.; самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности; уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей;

Коммуникативные УУД:

самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.);

отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами; в дискуссии уметь выдвинуть контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);

учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты и т.д.;

уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

8 КЛАСС (ОБЩАЯ ХИМИЯ (68часов, 2 час неделю)

Тема 1. Основные понятия химии (уровень атомно-молекулярных представлений) (54 ч)

Предмет химии. Химия как часть естествознания. Вещества и их свойства. Чистые вещества и смеси. Методы познания в химии: наблюдение, эксперимент. Приемы безопасно работы с оборудованием и веществами. Строение пламени.

Чистые вещества и смеси. Способы очистки веществ: отстаивание, фильтрование, выпаривание, кристаллизация, дистилляция. Физические и химические явления. Химические реакции. Признаки химических реакций и условия возникновения и течения химических реакций.

Атомы, молекулы и ионы. Вещества молекулярного и немолекулярного строения. Кристаллические и аморфные вещества. Кристаллические решетки: ионная, атомная и молекулярная. Простые и сложные вещества. Химический элемент. Металлы и неметаллы. Атомная единица массы. Относительная атомная масса. Язык химии. Знаки химических элементов. Закон постоянства состава вещества. Химические формулы. Относительная молекулярная масса. Качественный и количественный состав вещества. Вычисления по химическим формулам. Массовая доля химического элемента в сложном веществе.

Валентность химических элементов. Определение валентности элементов по формулам бинарных соединений. Составление химических формул бинарных соединений по валентности.

Атомно – молекулярное учение. Закон сохранения массы веществ. Жизнь и деятельность М.В. Ломоносова. Химические уравнения. Типы химических реакций.

Кислород. Нахождение в природе. Получение кислорода в лаборатории и промышленности. Физические и химические свойства кислорода. Горение. Оксиды. Применение кислорода. Круговорот кислорода в природе. Озон, аллотропия кислорода. Воздух и его состав. Защита атмосферного воздуха от загрязнений.

Водород. Нахождение в природе. Получение водорода в лаборатории и промышленности. Физические и химические свойства водорода. Водород — восстановитель. Меры безопасности при работе с водородом. Применение водорода.

Вода. Методы определения состава воды — анализ и синтез. Физические свойства воды. Вода в природе и способы ее очистки. Аэрация воды. Химические свойства воды. Применение воды. Вода — растворитель. Растворимость веществ в воде. Массовая доля растворенного вещества.

Количественные отношения в химии. Количество вещества. Моль. Молярная масса. Закон Авогадро. Молярный объем газов. Относительная плотность газов. Объемные отношения газов при химических реакциях.

Важнейшие классы неорганических соединений. Оксиды: состав, классификация. Основные и кислотные оксиды. Номенклатура оксидов. Физические и химические свойства, получение и применение оксидов.

Гидроксиды. Классификация гидроксидов. Основания. Состав. Щелочи и нерастворимые основания. Номенклатура. Физические и химические свойства оснований. Реакция нейтрализации. Получение и применение оснований. Амфотерные оксиды и гидроксиды.

Кислоты. Состав. Классификация. Номенклатура. Физические и химические свойства кислот. Вытеснительный ряд металлов.

Соли. Состав. Классификация. Номенклатура. Физические свойства солей. Растворимость солей в воде. Химические свойства солей. Способы получения солей. Применение солей.

Генетическая связь между основными классами неорганических соединений.

Демонстрации. Ознакомление с образцами простых и сложных веществ. Способы очистки веществ: кристаллизация, дистилляция, хроматография. Опыты, подтверждающие закон сохранения массы веществ.

Получение и собирание кислорода методом вытеснения воздуха и воды. Определение состава воздуха. Коллекция нефти, каменного угля и продуктов их переработки.

Получение водорода в аппарате Кипа, проверка водорода на чистоту, горение водорода, собирание водорода методом вытеснения воздуха и воды.

Анализ воды. Синтез воды.

Знакомство с образцами оксидов, кислот, оснований и солей. Нейтрализация щёлочи кислотой в присутствии индикатора.

Лабораторные опыты. Рассмотрение веществ с различными физическими свойствами. Разделение смеси с помощью магнита. Примеры физических и химических явлений. Реакции, иллюстрирующие основные признаки характерных реакции. Разложение основного карбоната меди (II). Реакция замещения меди железом.

Ознакомление с образцами оксидов.

Взаимодействие водорода с оксидом меди (II).

Опыты, подтверждающие химические свойства кислот, оснований.

Практические работы

- Правила техники безопасности при работе в химическом кабинете. Ознакомление с лабораторным оборудованием.
- Очистка загрязнённой поваренной соли.
- Получение и свойства кислорода
- Получение водорода и изучение его свойств.
- Приготовление растворов солей с определённой массовой долей растворённого вещества.
- Решение экспериментальных задач по теме «Основные классы неорганических соелинений».

Расчетные задачи:

Вычисление относительной молекулярной массы вещества по формуле. Вычисление массовой доли элемента в химическом соединении. Установление простейшей формулы вещества по массовым долям элементов.

Нахождение массовой доли растворённого вещества в растворе. Вычисление массы растворённого вещества и воды для приготовления раствора определённой концентрации.

Объёмные отношения газов при химических реакциях.

Вычисления по химическим уравнениям массы, объёма и количества вещества одного из продуктов реакции по массе исходного вещества, объёму или количеству вещества, содержащего определённую долю примесей.

Тема 2. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома. (7 ч)

Первые попытки классификации химических элементов. Понятие о группах сходных элементов. Естественные семейства щелочных металлов и галогенов. Благородные газы. Периодический закон Д.И.Менделеева. Периодическая система как естественно — научное классификация химических элементов. Табличная форма представления классификации химических элементов. Структура таблицы «Периодическая система химических элементов Д.И. Менделеева» (короткая форма): А- и Б- группы, периоды. Физический смысл порядкового элемента, номера периода, номера группы (для элементов А-групп).

Строение атома: ядро и электронная оболочка. Состав атомных ядер: протоны и нейтроны. Изотопы. Заряд атомного ядра, массовое число, относительная атомная масса. Современная формулировка понятия «химический элемент».

Электронная оболочка атома: понятие об энергетическом уровне (электронном слое), его ёмкости. Заполнение электронных слоев у атомов элементов первого – третьего периодов. Современная формулировка периодического закона.

Значение периодического закона. Научные достижения Д.И. Менделеева: исправление относительных атомных масс, предсказание существования неоткрытых элементов, перестановки химических элементов в периодической системе. Жизнь и деятельность Д.И.

Менделеева.

Демонстрации:

Физические свойства щелочных металлов. Взаимодействие оксидов натрия, магния, фосфора, серы с водой, исследование свойств полученных продуктов. Взаимодействие натрия и калия с водой. Физические свойства галогенов. Взаимодействие алюминия с хлором, бромом и йодом.

Тема 3. Строение вещества. (7 ч)

Электроотрицательность химических элементов. Основные виды химической связи: ковалентная неполярная, ковалентная полярная, ионная. Валентность элементов в свете электронной теории. Степень окисления. Правила определения степеней окисления элементов.

Демонстрации:

Сопоставление физико-химических свойств соединений с ковалентными и ионными связями

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

No	Название темы	Кол-во Часов	Кол-во контрольных	Кол-во практических
1	Основные понятия химии (уровень атомномолекулярных представлений)	54	3	6
2	Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома	7	1	1
3	Строение вещества	7	1	

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

ОБЩАЯ ХИМИЯ 9 класс 68 ч/год (2 ч/нед.)

Тема 1. Многообразие химических реакций. (21 ч)

Классификация химических реакций: реакции соединения, разложения, замещения, обмена. Окислительно-восстановительные реакции. Окислитель, восстановитель, процессы окисления и восстановления. Составление уравнений окислительно -восстановительных реакций с помощью метода электронного баланса.

Тепловые эффекты химических реакций. Экзотермические и эндотермические реакции. Термохимические уравнения. Расчеты по термохимическим уравнениям.

Скорость химических реакций. Факторы, влияющие на скорость химическтх реакций. Первоначальное представление о катализе.

Обратимые реакции. Понятие о химическом равновесии.

Химические реакции в водных растворах. Электролиты и неэлектролиты. Ионы. Катионы и анионы. Гидратная теория растворов. Электролитическая диссоциация кислот, оснований и солей. Слабые и сильные электролиты. Степень диссоциации. Степень диссоциации. Реакции ионного обмена. Условия течения реакций ионного обмена до конца. Химические свойства основных классов неорганических соединений в свете представлений об электролитической диссоциации и окислительно-восстановительных реакций. Понятие о

гидролизе солей.

Демонстрации:

Примеры экзо- и эндотермических реакций.

Взаимодействие цинка с соляной и уксусной кислотой. Взаимодействие гранулированного цинка и цинковой пыли с соляной кислотой.

Взаимодействие оксида меди (II) с серной кислотой разной концентрации при разных температурах.

Горение угля в концентрированной азотной кислоте.

Горение серы в расплавленной селитре.

Испытание растворов веществ на электрическую проводимость.

Движение ионов в электрическом поле.

Практические работы:

Изучение влияния условий проведения химической реакции на её скорость.

Решение экспериментальных задач по теме «Свойства кислот, солей и оснований как электролитов»

Лабораторные опыты:

Реакции обмена между растворами электролитов

Расчетные задачи: Вычисления по термохимическим уравнениям реакций.

Тема 2. Многообразие веществ. (42 часа)

Неметаллы. Галогены. Положение в периодической системе химических элементов, строение их атомов. Нахождение в природе. Физические и химические свойства галогенов. Получение и применение галогенов. Хлор. Физические и химические свойства хлора. Применение хлора. Хлороводород. Физические свойства. Получение. Солянная кислота и её соли. Качественная реакция на хлорид-ионы. Распознавание хлоридов, бромидов, иодидов.

Кислород и сера. Положение кислорода и серы в ПСХЭ, строение их атомов. Сера. Аллотропия серы. Физические и химические свойства. Нахождение в природе. Применение серы. Сероводород. Сероводородная кислота и ее соли. Качественная реакция на сульфидионы. Оксид серы (IV). Физические и химические свойства. Применение. Сернистая кислота и ее соли. Качественная реакция на сульфит-ионы. Оксид серы (VI). Серная кислота. Химические свойства разбавленной и концентрированной серной кислоты. Качественная реакция на сульфат-ионы. Химические реакции, лежащие в основе получения серной кислоты в промышленности. Применение серной кислоты.

Азот и фосфор. Положение азота и фосфора в ПСХЭ, строение их атомов. Азот, физические и химические свойства, получение и применение. Круговорот азота в природе. Аммиак: физические и химические свойства, получение и применение. Соли аммония. Азотная кислота и ее свойства. Окислительные свойства азотной кислоты. Получение азотной кислоты в лаборатории. Химические реакции, лежащие в основе получения азотной кислоты в промышленности. Применение азотной кислоты. Соли азотной кислоты и их применение. Азотные удобрения.

Фосфор. Аллотропия фосфора. Физические и химические свойства фосфора. Оксид фосфора (V). Ортофосфорная кислота и ее соли. Фосфорные удобрения.

Углерод и кремний. Положение углерода и кремния в ПСХЭ, строение их атомов. Углерод. Аллотропия углерода. Физические и химические свойства углерода. Адсорбция. Угарный газ, свойства и физиологическое действие на организм. Углекислый газ. Угольная кислота и ее соли. Качественные реакции на карбонат-ионы. Круговорот углерода в природе. Органические соединения углерода.

Кремний. Оксид кремния (4). Кремниевая кислота и ее соли. Стекло. Цемент.

Металлы. Положение металлов в ПСХЭ Д.И.Менделеева, строение их атомов. Металлическая связь. Физические свойства металлов. Ряд активности металлов. Химические свойства металлов. Общие способы получения металлов. Сплавы металлов. Щелочные металлы. Положение щелочных металлов в периодической системе, строение их

атомов. Нахождение в природе. Магний и кальций, их важнейшие соединения. Жесткость воды и способы ее устранения.

Алюминий. Положение алюминия в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства алюминия. Амфотерность оксида и гидроксида алюминия.

Железо. Положение железа в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства железа. Важнейшие соединения железа: оксиды, гидроксиды и соли железа (II) и железа (III). Качественные реакции на ионы.

Демонстрации:

Физические свойства галогенов.

Получение хлороводорода и растворение его в воде.

Аллотропные модификации серы. Образцы природных сульфидов и сульфатов.

Получение аммиака и его растворение в воде. Ознакомление с образцами природных нитратов, фосфатов

Модели кристаллических решёток алмаза и графита. Знакомство с образцами природных карбонатов и силикатов

Знакомство с образцами важнейших соединений натрия, калия, природных соединений кальция, рудами железа, соединениями алюминия. Взаимодействие щелочных, щелочноземельных металлов и алюминия с водой. Сжигание железа в кислороде и хлоре.

Практические работы:

Получение соляной кислоты и изучение её свойств.

Решение экспериментальных задач по теме «Кислород и сера»

Получение аммиака и изучение его свойств.

Получение оксида углерода (IV) и изучение его свойств. Распознавание карбонатов.

Решение экспериментальных задач по теме «Металлы и их соединения».

Лабораторные опыты:

Вытеснение галогенами друг друга из растворов их соединений.

Качественные реакции сульфид-, сульфит- и сульфат- ионов в растворе.

Ознакомление с образцами серы и её природными соединениями.

Взаимодействие солей аммония со щелочами.

Качественные реакции на карбонат- и силикат- ионы.

Качественная реакция на углекислый газ.

Изучение образцов металлов. Взаимодействие металлов с растворами солей. Ознакомление со свойствами и превращениями карбонатов и гидрокарбонатов. Получение гидроксида алюминия и взаимодействие его с кислотами и щелочами. Качественные реакции на ионы $\mathrm{Fe^{2^+}}$ и $\mathrm{Fe^{3^+}}$

Расчетные задачи:

Вычисления по химическим уравнениям массы, объёма или количества вещества одного из продуктов реакции по массе исходного вещества, объёму или количеству вещества, содержащего определённую долю примесей.

Тема 3. Краткий обзор важнейших органических веществ. (5 часов)

Предмет органической химии. Неорганические и органические соединения. Углерод – основа жизни на Земле. Особенности строения атома углерода в органических соединениях. Углеводороды. Предельные углеводороды. Метан, этан, пропан — простейшие представители предельных углеводородов. Структурные формулы углеводородов. Гомологический ряд предельных углеводородов. Гомологи. Физические и химические свойства предельных углеводородов. Реакции горения и замещения. Нахождение в природе предельных углеводородов. Применение метана.

Непредельные углеводороды. Этиленовый ряд непредельных углеводородов. Этилен. Физические и химические свойства этилена.

Ацетиленовый ряд непредельных углеводородов. Ацетилен. Свойства ацетилена.

Применение ацетилена.

Производные углеводородов. Краткий обзор органических соединений: одноатомные спирты, карбоновые кислоты, сложные эфиры, жиры, углеводы, аминокислоты, белки. Роль белков в организме.

Понятие о высокомолекулярных веществах. Структура полимеров: мономер, полимер, структурное звено, степень полимеризации. Полиэтилен, полипропилен, поливинилхлорид.

Демонстрации:

Модели молекул органических соединений. Горение углеводородов и обнаружение продуктов их горения. Качественная реакция на этилен. Получение этилена.

Растворение этилового спирта в воде. Растворение глицерина в воде.

Получение и свойства уксусной кислоты. Исследование свойств жиров: растворимость в воде и органических растворителях.

Качественные реакции на глюкозу и крахмал.

Ознакомление с образцами изделий из полиэтилена, полипропилена, поливинилхлорида. Практические работы сгруппированы в блоки — химические практикумы, которые служат не только средством закрепления умений и навыков, но также и средством контроля за качеством их сформированности.

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

No	Название темы	Кол-во Часов	Кол-во контрольных	Кол-во практичеких
1	Многообразие химических реакций	16	1	2
2	Многообразие веществ	42	2	4
3	Краткий обзор важнейших органических веществ	5	1	
	итого	68	4	6

УЧЕБНО-МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Литература

- 1. Гара Н.Н. Химия: задачник с «помощником»: 8-9 классы / Н.Н. Гара. М.: Просвещение.
- 2. Рудзитис Г.Е. Химия: 8 кл.: учеб. для общеобразоват. Учреждений / Г.Е. Рудзитис, Φ .Г. Фельдман. М.: Просвещение.
- 3. Рудзитис Г.Е. Химия: 9 кл.: учеб. для общеобразоват. Учреждений / Г.Е. Рудзитис, Φ .Г. Фельдман. М.: Просвещение.